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Abstract

A Bayesian method is presented for the analysis of two types of sudden change at an unknown time-point in a sequence of
energy inflows modeled by independent normal random variables. First, the case of a single shift in the mean level is revisited to
show how such a problem can be straightforwardly addressed through the Bayesian framework. Second, a change in variability
is investigated. In hydrology, to our knowledge, this problem has not been studied from a Bayesian perspective. Even if this
model is quite simple, no analytic solutions for parameter inference are available, and recourse to approximations is needed. It is
shown that the Gibbs sampler is particularly suitable for change-point analysis, and this Markovian updating scheme is used.
Finally, a case study involving annual energy inflows of two large hydropower systems managed by Hydro-Que´bec is presented
in which informative prior distributions are specified from regional information.q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

This paper provides a Bayesian approach to char-
acterize when and by how much a single change has
occurred in a sequence of hydrometeorological
random variables. Inferences herein are based on the
analysis of posterior distributions and are conditional
upon the fact that a change happened with certainty.
The problem of testing its existence, and of identify-
ing its type, is investigated in Perreault et al. (2000a).

Although such a hypothesis is rarely stated expli-
citly, the assumption that stochastic time series
remain stationary plays a crucial role in water
resources management. Under the assumption that

tomorrow will statistically behave like yesterday,
stochastic models are fitted to hydrometeorological
variables such as river flow, precipitation and
temperature. The estimated models are then used for
many engineering purposes, in particular for simulat-
ing the operation of hydropower systems (energy
planning, design of power plants, operation of reser-
voirs). Consequently such models and the decisions
stemming from them are based on the hypothetical
stationary behavior of hydrometeorological inputs.
However, some hydrometeorological time series can
exhibit abrupt changes maybe caused by site-specific
factors (e.g. land-use effect on water yield) or induced
by a climatic change. This leads to questioning the
stationarity hypothesis in hydrometeorological time
series analysis.

Hydro-Québec is a public company that produces,
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transmits and distributes electricity throughout the
province of Que´bec. It currently operates 54 power
plants supplied by 26 large reservoirs. The sites are
assembled to form 8 major hydropower systems: St-
Laurent, Outaouais, La Grande, St-Maurice, Bersimis,
Manicouagan, Outardes and Churchill Falls. For each
of these systems, annual energy inflows are evaluated
by multiplying the net basin supply of each reservoir
into the system by a factor based on the production
capacity of the corresponding power plant. Such
annual energy inflows are therefore subject to hydro-
meteorological changes, if any. These data are of high
importance for energy planning because some of their
statistical characteristics (namely mean and variance)
are used as inputs to construct scenarios or to forecast
future energy availability.

Consider the time plot in Fig. 1 which shows the
annual energy inflow in terawatt-hour (TWh) for the
hydropower system Churchill Falls. This 92 432 km2

watershed is situated in northeastern Que´bec, in the
Labrador (province of Newfoundland).

Examining this time series, one may suspect that an
abrupt change in the mean level has occurred around
1983, and two distinct partial means could be evalu-
ated: �x1 from 1943 to 1983 and�x2 from 1984 to 1996
(continuous lines). On the other hand, it can be argued
that this sudden fluctuation may only be due to the
natural variability of the hydrologic regime, and one
would rather still consider the overall mean�x as the
representative available annual amount of energy
(dotted line). Let’s now suppose that based on these
historical observations, the construction of a power
plant has to be planned for hydropower generation.
To meet the energy demand and eventually export
generated hydroelectricity, the hydropower company
would like to rely on one and only one of the possible
situations� �x1; �x2� or �x: Since for this case� �x2 2 �x1�= �x
may be as high as 15%, decisions for the future

L. Perreault et al. / Journal of Hydrology 235 (2000) 221–241222

1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995
26

28

30

32

34

36

38

40

42

44

46

Year

E
ne

rg
y

in
flo

w
(T

W
h)

Fig. 1. Annual energy inflow for Churchill Falls power system.



relying on �x can be dramatically different from antici-
pations based on� �x1; �x2�: Analyzing a change in the
mean level energy inflow data is then clearly an essen-
tial step before planning hydropower systems. Other
hydrological contexts such as rainfall estimation,
flood analysis or climatological studies of global
warming are concerned with abrupt shifts in the
mean level. References can be found in Perreault et
al. (1999).

As an example for a possible change of a different
kind, consider the annual series of energy inflow for
the Outaouais power system located in the southwes-
tern Québec (Fig. 2).

The overall variability of these observations seems
to have suddenly decreased after 1980. The energy
planning system of forecasts depends strongly upon
energy inflow variability. For instance, a sharp knowl-
edge of this characteristic is the key point to determine
which range of scenarios is needed to make a good

decision for reservoir releases and interannual storage
strategy. After examining this series, an engineer will
typically base his decision on one of the two possible
estimates: evaluating the variance over the entire
period or considering only the last observations, i.e.
using more but maybe not relevant information about
future realizations or taking into account less but
maybe more representative information. As in the
case of a shift in the mean, a change in variance
may induce important decisions and have large
economic consequences (it is well known for instance
that the size of reservoirs will be directly related to
inflow variance); inference about existence and char-
acteristics of these changes can thus also be consid-
ered as a valuable precaution before developing
management rules in water resources systems.

In this paper, interest is mainly focussed on the
estimation of the unknown time-point and intensity
of the change, assuming an abrupt change has in
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Fig. 2. Annual energy inflow for Outaouais power system.



fact occurred. The aim is to outline that, in the case of
a single sudden change in the mean level or variance,
these problems can be straightforwardly addressed
through the Bayesian framework, which in turn can
be easily solved by implementation of explicit or
Monte Carlo based inference techniques. We empha-
size that the purpose of this paper is not to determine
why such sudden changes occurred (e.g. climatic
change or site-specific factors). Of course, attribution
is an important and interesting research topic, but we
are only concerned with developing statistical tools to
infer about the point and intensity of a change to help
decision making.

In Section 2, we formulate the general Bayesian
change-point setting and consider two specific
models: a single change in the mean and a single
change in the variance of a sequence of independent
normal random variables. Change in the mean level
leads to solutions in closed form and results are there-
fore directly available. However, such is not the case
for a change in the variance. The Gibbs sampler, as
presented in Section 3, provides an elegant and conve-
nient answer to this problem. In Section 4, the practi-
tioner’s point of view is taken when applying the
approach to the series of Churchill Falls and
Outaouais energy inflows presented above. A simple
regional analysis was performed to specify the para-
meters of the prior distributions which are assumed to
represent the prior state of belief. Finally, Section 5
offers a general discussion and conclusions.

2. Bayesian analysis of normal sequences with an
unknown change-point

The simplest formulation of the change-point
problem is the following. Let us assume that the densi-
tiesp1(x) andp2(x) belong to a known parametric class
of probability densitiesP� { p�xuu�; u [ Q} indexed
by an unknown parameteru such that, for a sequence
of n independent random variablesX �
�X1;X2;…;Xn�; we have

Xi , p1�x� � p�xi uu1�; i � 1;…; t

Xi , p2�x� � p�xi uu2�; i � t 1 1;…;n
�1�

whereu1 ± u2 andt � 1; 2;…;n 2 1 is an unknown
parameter, called the change-point. That is, the first

and second parts of the sequence of random variables
are distributed as statistical distributions which belong
to the same class, but with different unknown para-
meteru . Since the unknown change-pointt can take
values between 1 andn 2 1; this model assumes that
exactly one abrupt change occurred with certainty.
Indeed other types of changes such as trends can
exist, and model (1) would not be appropriate.
However, recent understanding of global climate
interactions such as the El Nino/La Nina and the
North Atlantic Oscillation phenomena give credence
to the idea that climate may operate in two or more
quasi-stationary states, and that it can rapidly switch
from one state to another (Rodriguez-Iturbe et al.,
1991; Kerr, 1992, 1999). Therefore, an abrupt
change-point model such as expression (1) may be
representative of several hydrological and climatic
time series. For instance, there is evidence of such
behavior in climatic and hydrological data series in
the Africa (Paturel et al., 1997; Servat et al., 1997) and
in the Pacific region (Kerr, 1992). As regards Hydro-
Québec energy inflow series, many annual runoff
series for rivers situated in Northern Que´bec seem to
exhibit this type of sudden drastic change (Perreault et
al., 2000b). Thus, model (1) must be considered, at
least as a first methodological step. Anyhow, we think
that there is a need to consider first this simple model
in detail since application of Bayesian change-point
analysis in hydrological literature is very limited.

The likelihood function resulting fromn observa-
tions x � �x1; x2;…; xn� generated by model (1)
becomes

p�xuu1; u2; t� �
Yt
i�1

p�xi uu1�
Yn

i�t1 1

p�xi uu2� �2�

from which, for instance, maximum likelihood esti-
mates fort , u1 and u2 can be obtained (Hinkley,
1970). In the Bayesian perspective, a joint prior distri-
bution p(u1, u2, t) is assumed for the parameters.
Bayes theorem then provides the joint posterior distri-
bution p(u1, u2, t ux) of u1, u2, t given the data by
normalization overx of the joint density written as

p�xuu1; u2; t�p�u1; u2; t� �3�
Just as the prior distributionp(u1, u2, t ) reflects

beliefs about the parameters prior to experimentation,
the posterior distributionp(u1, u2, t ux) reflects the
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updated beliefs after observing the sample data. In the
Bayesian framework, all statistical inference about the
unknown parameters is based on the posterior
distribution (Berger, 1985). The analysis of poster-
ior distributions is often referred to as “scientific
reporting”.

Interest is now on making inference about the
change-pointt , the structure parametersu1 and u2,
and any suitable functionW(u1, u2) which can
describe the amount of shift. To achieve this, all
marginal posterior distributions must be found by
integration. For example, to evaluatep(t ux), u1 and
u2 must be integrated out ofp(u1, u2, t ux). Using
conjugate prior distributions for fixedt , and assuming
prior independence betweent and the other para-
meters (u 1, u 2), i.e. p�u1; u2; t� � p�u1; u2�p�t�;
solutions in closed form can be obtained for
some simple models (see Section 2.1). Likelihoods
for which conjugate prior density functions exist
are those corresponding to exponential family
models (Bernardo and Smith, 1994). In more
complex models (see Section 2.2), even with
simple prior distributions and independence, inte-
gration may turn to a very difficult numerical task.
However, use of Gibbs sampler, a tool particularly
suitable for change-point analysis, enables a
straightforward solution to such problems as
developed in Section 3.

2.1. A single change in the mean (model M1)

As in most published approaches on change-point
studies, we assume univariate sequences of indepen-
dent normal random variables. This simple model is
appropriate for Hydro-Que´bec large hydropower
system annual energy inflows. One can invoke the
central limit theorem to justify the normal assump-
tion, since annual energy inflows for a given hydro-
power system are calculated as a summation over time
and space of the monthly energy inflows. In addition,
changes in the parameters of the normal model have a
direct and simple hydrological interpretation. If
needed, one may transform the data to achieve
normality. However, in this case of reparametrization,
interpretation of a change in the new parameters
should be done very carefully. From the hydrological
point of view, the independence assumption between
successive values may be more questionable. It is

made here for convenience as a first methodological
step, and can be relaxed eventually by considering, for
example, a shift in the mean-vector of an autoregres-
sive model. Hydro-Que´bec annual energy inflows are
proportional to the net basin supplies, which in turn
are evaluated following the water balance equation.
Therefore, the data considered herein are impli-
citly adjusted for surface and subsurface storage
effect that could induce interannual correlations,
and the assumption of independence seems reason-
able to us. Still, it can be verified on similar
annual series for which it is believed that no
change has occurred.

Consider a set of random variables observed at
consecutive equally spaced time points. Suppose
that, due to some exogenous factors, the first and
second parts of the sequence of random variables
operate at two different mean levels, respectively,
m1 andm2, but with the same variances 2. This situa-
tion can be represented by the following model
denoted byM1:

Xi , N�xi um1;s
2�; i � 1;…; t

Xi , N�xi um2;s
2�; i � t 1 1;…;n

�4�

whereN�xi um;s
2� stands for the usual normal prob-

ability density function (p.d.f.) with parametersm [
R ands [ R

1
:

The Bayesian framework for inference regarding
model M1 dates back to Chernoff and Zacks (1963).
Main theoretical contributions can be found in Smith
(1975), Lee and Heghinian (1977), Booth and Smith
(1982) and Broemeling (1985). Their approaches
differ mainly by the prior distributions specified to
represent the unknown parameters. The method
proposed by Lee and Heghinian (1977) has been
used in several practical cases in hydrology, for
instance by Bruneau and Rassam (1983), and more
recently by Paturel et al. (1997) and Servat et al.
(1997). Also, Bernier (1994) and Perreault et al.
(1999) considered a Bayesian approach for model
M1 to analyze changes in hydrometeorological time
series.

To illustrate the principle of Bayesian change-point
analysis, the posterior distributions of the parameters
of interest for modelM1 are derived in Appendix A.
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Conjugate prior distributions are considered and
independence between the date of changet and the
model parameters is assumed. With these assump-
tions, the joint posterior distribution is a finite mixture
of conjugate distributions, and analytical expressions
are obtained for all marginals and conditionals. The
assumption of independence signifies that what is
known about date of change in the mean level of the
annual energy inflows does not depend upon the
means before and after the change. Note that this
hypothesis could be questionable if for instance
one believes that a change can only occur if the
mean level reaches a given threshold. These
results are well known in the statistical literature,
but change-point inference analysis does not
belong to the standard statistical toolbox of most
practitioners in hydrology.

2.2. A single change in the variance (model M2)

In this section we consider the change of variance
case represented by modelM2:

Xi , N�xi um;s
2
1�; i � 1;…; t

Xi , N�xi um;s
2
2�; i � t 1 1;…;n

�5�

The problem of a change in the variance occurring
at an unknown time-point has been less widely
covered than a single shift in the mean level. In
hydrology, to our knowledge, it has not been studied
from a Bayesian perspective although the variance of
hydrological series is an important parameter in water
resources management. In the statistical literature,
a change in the variance of a sequence of normal
random variables was first treated within the
Bayesian framework by Smith (1975) who
assumed noninformative prior distributions. In
this particular case, closed form for the posterior
densities can be obtained. Menzefricke (1981) gener-
alized Smith’s approach by considering informative
priors.

The likelihood function resulting fromn observa-
tions x � �x1; x2;…; xn� of model M2, a series of
annual energy inflows such as shown in Fig. 2, can

be expressed as

p�xum;s 2
; t;M2� �

Yt
i�1

N�xi um;s
2
1�

Yn

i�t1 1

N�xi um;s
2
2�

� 1
2p

� ��n=2� 1
s 2

1

 !�t=2�
1
s 2

2

 !��n2t�=2�

× exp 2
t

2s 2
1

�s2
t 1 � �xt 2 m�2�

( )

×exp 2
�n 2 t�

2s 2
2

�s2
n2t 1 � �xn2t 2 m�2�

( )
(6)

We assumed the same joint prior distribution as
Menzefricke (1981) to represent prior knowledge
about the parameters of modelM2:

p�m;s 2
; tuM2�

�N�muf; ls 2
1�IG�s 2

1 ua1;b1�IG�s 2
2 ua2;b2�p�tuM2�

�NIGIG�m;s 2uf; l;a;b�p�tuM2� �7�
As usual, the prior distribution ofm is normal with

precision depending ons1, and priors for the variance
are inverted gamma densities. However, strictly
speaking, the prior distribution (7) although closely
related is not a complete conjugate even for fixedt .
In fact, givent , expression (7) assumes prior indepen-
dence betweens 2

1 ands 2
2 ; while no algebraic manip-

ulations on the likelihood (6) allows us to separate
these parameters in two independent expressions.
Therefore, the exact conjugate should consider a
fixed dependence structure betweens 2

1 ands 2
2 : This

would lead to a nonstandard joint prior density for
which it is difficult to specify the hyperparameters:
eliciting knowledge about dependence between
variances may be at least a quite complicated task if
not unrealistic. We therefore adopt Menzefricke’s
prior assumptions letting the data account for the
strength of dependence, if any.

Selection of particular values in expression (7) for
the hyperparametersf , l , a andb belongs to mode-
ler’s tasks (Section 4.1). These can be chosen to give
various general shapes for the joint prior distribution
and take into account a variety of prior beliefs about
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the studied phenomenon. The hyperparameter values
may come from historical or regional information,
even from subjective knowledge. When prior infor-
mation about the phenomenon is limited, it may be
desirable to let the prior knowledge for the unknown
parameters be vague (Box and Tiao, 1973). The prior
distribution can be turned to a particular form of
noninformative density by lettingp�m;s 2

; tuM2� /
p�tuM2�s22

1 s22
2 ; i.e. l! ∞; a1 � a1 � b1 � b2 !

0 in expression (7). This corresponds to Smith’s
noninformative joint prior distribution forM2.

Using Bayes theorem to combine expressions (6)
and (7), the joint posterior distribution of�m;s 2

; t�;
given the observed datax, is proportional to

p�m;s 2
; tux;M2�/

� exp

(
2

l 0�n 2 t�s 2
1 1 s 2

2

2l 0s 2
1s

2
2

�m 2 f 00�2
)

�
 

1
s 2

1

!a 0111 
1
s 2

2

!a 0211

× exp

(
2

"
b 01
s 2

1

1
b 02
s 2

2

1
�n 2 t��f 0 2 �xn2t�2
2�l 0�n 2 t�s 2

1 1 s 2
2

#)
p�tuM2�

�8�
where

l 0 � l=�1 1 tl�; f 0 � �1 2 l 0t�f 1 l 0t �xt;

f 00 � 1
l 0�n 2 t�s 2

1 1 s 2
2

�s 2
2f
0 1 l 0�n 2 t�s 2

1 �xn2t�

b 01 � t

2
�s2

t 1 �1 2 l 0t��f 2 �xt�2�1 b1;

b 02 � n 2 t

2
s2
n2t 1 b2;

a 01 � a1 1
t 1 1

2
; a 02 � a2 1

n 2 t

2

It is possible to obtain an expression for the
marginal posterior density of the intensity of change,
defined ash � s 2

2 =s
2
1 ; which is a parameter of great

interest for describing a change in variance. First,
transforming tou � s 2

1 andh � s 2
2 =s

2
1 ; and integrat-

ing m andu out from this joint posterior distribution
(8), the joint posterior distribution ofh and t is

obtained. Then, summing overt , the marginal poster-
ior distributionp�hux;M2� is seen to be proportional to

p�hux;M2� /
Xn2 1

t�1

"
l 0

l 0�n 2 t�1 h

#1=2

�
 

1
h

!a 0211=2
G�a 01 1 a 02 1 1=2�
�g�t;h��a 011a 0211=2

p�tuM2�;

�9�
where

g�t;h� � b 01 1 b 02h
21 1

�n 2 t��f 0 2 �xn2t�2
2�l 0�n 2 t�1 h�

( )
Writing expression (8) differently, it is also possible

to find a closed form for the marginal posterior distri-
bution of m by integratings 2

1 and s 2
2 out of this

expression and summing overt . This expression is
not given here sincem is not the parameter of major
interest for modelM2. However, unlike the noninfor-
mative case or the problem of a single change in the
mean level, recourse to numerical integration is
necessary to make inferences about the other para-
meters�s 2

1 ;s
2
2 andt). How can we avoid performing

integration to get the normalizing constants in expres-
sions (8) and (9)? Fortunately, the Gibbs sampler is an
alternative handy tool, easy to implement for the
hydrologist without numerical analysis skills, as will
be showed in the next section.

3. Implementation of the Gibbs sampler for model
M2

The Gibbs sampler is one of a class of Markov
Chain Monte Carlo (MCMC) algorithms that facilitate
practical statistical problem solving (Tanner, 1992).
In a Bayesian perspective, the objective is to produce
posterior densities for parameters of interest. For
simple models analytic calculation is possible, and
results are directly available. For more complex
models, recourse to numerical integration is neces-
sary. However, in some models conventional numer-
ical techniques are often insufficiently accurate or at
least difficult to implement without being gifted in
computer programming and numerical analysis. In
contrast, the Gibbs sampler is generally straight-
forward to implement and is easily accessible to the
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average statistical practitioner. The Gibbs sampler
was developed formally by Geman and Geman
(1984) in the context of image restoration. Gelfand
and Smith (1990) showed its applicability to general
Bayesian computations while Carlin et al. (1992) and
Stephens (1994) applied it to change-point problems.
In hydrology, Lu and Berliner (1999) used the Gibbs
algorithm, while other MCMC approaches were
adopted by Kuczera and Parent (1998) and Campbell
et al. (1999).

The idea of MCMC methods is to construct a
Markov chain whose stationary and ergodic distribu-
tion is precisely the posterior distribution of interest
that is intractable analytically. In the context of the
general change-point model (1), the Gibbs sampler is
an updating scheme that involves drawingt random
values from each of the set of “full posterior distribu-
tions” p�tuu1; u2; x�; p�u1uu2; t; x� andp�u2uu1; t; x�: A
brief description in a general context of how these
values should be sampled is offered in Lu and Berliner
(1999). More details on theoretical properties of the
algorithm can be found in Gelfand and Smith (1990).
Subject to certain mild regularity conditions on the
joint and conditional densities, it can be proven that
the obtained sampled vector {�t�i�; u�i�1 ; u�i�2 �; i �
1;…; t} tends in distribution to a sample from the
target densityp�t; u1; u2ux� as t tends to infinity.
Hence, replicating the entire process in parallelm
times and keeping the values obtained in the last itera-
tion t provides independent and identically distributed
triplets �t�t�j ; u�t�1j ; u

�t�
2j �; j � 1;…;m: These values can

then easily be used for estimating different features
of the posterior joint distribution, namely the marginal
densities. For example, as an estimate forp�u1ux�; one
can draw a histogram with�u�t�11;…; u�t�1m� or use a more
general kernel-type of estimate. But since for any
marginal the corresponding full conditional has been
assumed available, more efficient estimation is
obtained by using this set of distributions. In this
paper, we use the so-called “Rao–Blackwellized”
estimate (Gelfand and Smith, 1990); for density
p�u1ux�; the estimate is given by

p̂�u1ux� � 1
m

Xm
j�1

p�u1ut�t�j ; u�t�2j ; x� �10�

The formal argument for the higher efficiency of
expression (10) is based on the Rao–Blackwell

theorem (Lehmann, 1983, p. 50). There may also be
interest in a function of the random variables
W�t; u1; u2�: Because each triplet�t�t�; u�t�1 ; u�t�2 �
provides an observedW�t� �W�t�t�; u�t�1 ; u�t�2 � whose
marginal distribution is approximatelyp(W), an esti-
mate analogous to expression (10) can be obtained. In
fact, if u1 actually appears as an argument ofW, the
full conditional densityp�Wuu2; t; x� can be deduced
by univariate transformation of variable from
p�u1uu2; t; x�; and used in expression (10). Note that
complete implementation of the Gibbs sampler
requires the determination oft and, across iterations,
the choice ofm. These values may vary between indi-
vidual problems and are thus subject of much current
research (a Web site which includes a lot of informa-
tion and references about convergence diagnostics is
http://www.ensae.fr//crest/statistique/robert/McDiag).
Generally, experimentation with different settings oft
andm are necessary. We do not view this as a draw-
back since random generation is now computationally
inexpensive.

For the general change-point model (1), each of the
full conditional distributionsp�tuu1; u2; x�; p�u1uu2;

t; x� and p�u2uu1; t; x� is proportional to expression
(3). Moreover, whatever the prior dependence struc-
ture between the parametersu1 and u2 may be,
p�tuu1; u2; x� is exactly of the form

p�tuu1; u2; x� � p�xuu1; u2; t�p�t�Xn2 1

t�1

p�xuu1; u2; t�p�t�
�11�

and can be easily sampled since it involves a discrete
density. Suppose thatu1 andu2 are assumed indepen-
dent so thatp�u1; u2� � p�u1�p�u2�: If p�u1� is conju-
gate withp�xi uu1� andp�u2� is conjugate withp�xi uu2�
thenp�u1uu2; t; x� does not depend onu2 and is merely
the prior p�u1� updated by the datax1;…; xt while
p�u2uu1; t; x� is p�u2� updated byxt11;…; xn: Since
p�u1� and p�u2� belong to standard parametric
families, it is straightforward to sample from them.
More generally, this property still remains when
only conditional independence upon a “nuisance”
parameter, which describes the unknown but constant
structure of the distribution on both sides oft (s 2 in
M1 andm in M2). Therefore, with these hypotheses,
the Gibbs sampler is particularly suitable for change-
point analysis. If the assumption of conjugate priors
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and of independence is dropped, the full conditionals
may not be expressed in a simple form and we must
sample from nonstandardized densities of the form
(3). In this case, more general Markov Chain Monte
Carlo approaches are needed (Robert, 1996, 1998).
The most popular tool that one can implement is
undoubtedly the Metropolis–Hasting algorithm
(Metropolis et al., 1953).

Because prior distribution (7) assumes indepen-
dence betweens 2

1 ands 2
2 ; the collection of full condi-

tional densities p�mus 2
; t; x;M2�; p�s 2

1 um;s 2
2 ; t; x;

M2� and p�s 2
2 um;s 2

1 ; t; x;M2� can readily be deter-
mined for modelM2. Each of these distributions is
proportional to expression (8) and belong to the
same parametric family as their corresponding prior.
They are therefore available for sampling. Finally, as
it was outlined above,p�tum;s 2

; x;M2� is exactly of
the form (11).

More precisely, from expressions (6)–(8) it is
straightforward to verify that the full conditionals
for M2 are as
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Highly efficient estimates for the marginal posterior
distributions of each parametersm;s 2

1 ;s
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2 andt from

Gibbs sampler simulated values can then be obtained
using a Rao–Blackwellized estimator. Following the
discussion above, we can also transforms 2

2 to hs 2
1 to

obtain the full conditional distribution ofh as
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and use it to evaluate the Rao–Blackwellized estimate
for p�hux;M2�; i.e.

p̂�hux;M2� � 1
m

Xm
j�1

p�hum�t�j ;s 2�t�
1j ; t�t�j ; x;M2� �12�

4. Applications

Bayesian change-point analysis procedure is now
applied to annual energy inflow series presented in
the introduction. ModelM1 is assumed for the Church-
ill Falls hydropower system, while modelM2 is
considered for the Outaouais hydropower system.

4.1. Specifying prior distributions

The first step in Bayesian analysis is to set up afull
probability model. That is, in addition to modeling the
observable quantities (modelM1 or M2 for the annual
energy inflow), we must represent the prior degree of
belief about the unknowns, i.e. the parameters of the
models. In Bayesian analysis, specifying a prior distri-
bution for the parameters is an integral part of the
modeling task, with all hypotheses that modeling
involves. Prior elicitation is therefore a crucial
component of the Bayesian approach. Generally, a
compromise has to be reached between mathematical
simplicity and realism. The conjugate prior distribu-
tion assumption adopted here (Section 2) facilitates
the derivation of posterior distributions and may be
criticized for lack of realism. Still, the family of
normal-inverted gamma is flexible and allows for
the representation of a wide spectrum of prior knowl-
edge. To be fully operational, it is desirable to specify
the prior distributions by eliciting knowledge of an
expert and/or by using other information than the
data themselves. An engineer should have valuable
prior information about annual energy inflow beha-
vior (subjective knowledge, regional information,
etc.). To our knowledge, the first convincing approach
to specify realistic priors in a hydrological context has
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been proposed by Bernier (1967) for frequency analy-
sis with the lognormal distribution. Hyperparameter
values were specified using estimated quantiles from a
preliminary study. Posterior quantiles and credible
intervals were then obtained using Bayes theorem.
More recently, Coles and Tawn (1996) used a similar
approach for the analysis of extreme rainfall data with
the GEV probability distribution. To specify the prior
density for the parameters of the GEV, they elicited
subjective knowledge of an expert hydrologist within
the quantile space, a scale with which he has famil-
iarity. For more discussion and references on prior
specification see Berger (1985) and Bernardo and
Smith (1994).

Experts in Hydro-Que´bec do not agree about the
existence of a shift either in the mean level or in the
variability of annual energy inflows. Moreover,
specialists who suspect the existence of a sudden
change are not willing to specify their degree of belief
about the year at which it occurred without referring
to the data of interest. This information is therefore
biased. In fact, the use of any of these data in the prior
formulation is not formally acceptable in a Bayesian
analysis (Berger, 1985). Finally, if we examine the
annual energy inflows for the other Hydro-Que´bec
hydropower systems, no clear change-point can be
identified. Therefore, one cannot reasonably favor
any year of change, and we assumet is distributed
as a uniform discrete distribution for both modelM1

and M2. Note that in this case, the prior expected
change-point is 1970, i.e. the mean of a discrete
uniform probability distribution on the interval
[1943, 1995].

For the other parameters, the prior degrees of belief
were assumed to be represented by normal-inverted

gamma type of distributions (see A2 forM1 and
expression (7) forM2). Complete specification of
prior knowledge only requires the choice of the hyper-
parameters in these expressions. Because it is felt that
the annual energy inflow of all hydropower systems
are related in some way, we based the determination
of these quantities on a regional analysis. The infor-
mation available to establish a transfer function
between the site of interest and the other systems
consists, for each hydropower system, of four vari-
ables: average annual energy inflow�y�e�; variance of
annual energy inflow (yvar), basin area (A), average
annual precipitation� �P� and installed generating capa-
city (C). Two data sets were considered, correspond-
ing, respectively, to the values ofy�e; yvar and �P
evaluated before and after the prior expected year of
changeE{ t} � 1970: Table 1 gives the first data set.

The idea is to construct a simple model to predict
the average energy inflowy�e and the varianceyvar of
the energy inflows for the site of interest, before and
after 1970. These predictions, along with their stan-
dard error, are then used to elicit the mean and the
variance of the prior distributions. Finally, solving a
simple system of equations for the first two moments
leads to estimated values for the hyperparameters
based on regional information. Since a regional
model is used to specify hyperparameters by transfer-
ring knowledge from the nearby sites, this approach,
in some way, has much in common with an empirical
hierarchical Bayesian analysis (Berger, 1985).

To illustrate the procedure, let us suppose that
we want to specify the hyperparameters of a
normal-inverted gamma prior distribution
N�muf; ls 2�IG�s 2ua;b�: If we denote the predicted
values ofy�e andyvar, respectively, bŷy�e and ŷvar; and
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Table 1
Data set withy�e; yvar and �P calculated before the prior expected change-point 1970 (y�e: average annual energy inflow;yvar: variance of annual
energy inflow;A: basin area;�P: average annual precipitation;C(TW): installed generating capacity)

System y�e (TWh) yvar (TWh2) A (km2) �P (mm) C

Bersimis 7.65 0.56 15 695 975 0.00171
Churchill Falls 35.36 28.14 92 432 891 0.00543
La Grande 79.10 102.14 176 472 764 0.01524
Churchill Falls 22.24 4.92 45 480 1030 0.00502
Outaouais 10.05 3.62 225 280 934 0.00188
Outardes 9.92 1.28 18 798 1008 0.00184
St-Maurice 9.01 2.14 51 813 1016 0.00164
St-Laurent 11.62 1.41 794 000 982 0.00226



their corresponding variances bys2�ŷ�e� ands2�ŷvar�; it
is natural to take as prior mean and variance form and
s 2

E{m} � ŷ �e; Var{m} � s2�ŷ�e�; E{s 2} � ŷvar;

Var{s 2} � s2�ŷvar�

Using expressions for prior mean and variance of
normal and inverted gamma distributions (Bernardo
and Smith, 1994, p. 431), and then solving this system
of equations leads us to

a � 2 1 ŷ2
var=s

2�ŷvar�; b � ŷvar�a 2 1�;

f � ŷ�e andl � s2�ŷ�e�=ŷvar:

�13�

Linear regression analysis was performed for each
data set (the first one is given in Table 1), discarding
the site of interest. A simple regression considering
only the generating capacityC appeared to be the best
regional models. More precisely, we have

y�e � g �eC 1 e andyvar � gvarC
2 1 e:

In the particular case of hydropower systems in
Québec, precipitation and drainage area are very
poorly related to the average energy inflow or the
variance compared to generating capacityC. Indeed,

variable C is a good summary of what an engineer
would think of the potential annual energy output
the company may derive when installing a hydro-
power plant. It can be used as a prior knowledge of
what can be “intuitively” expected from the site,
before the production started, that is in the state of
knowledge before collecting a long series of observa-
tions in working conditions. The estimated coeffi-
cients and the corresponding prediction along with
its variance are given in Table 2.

Using the results in Table 2 in expression (13) leads
to the values of the hyperparameters for the two series.
To summarize, the prior mean and standard deviation
of each parameter are listed in Table 3 for the two
cases.

This table will be used in the next sections to show
how prior state of belief is updated by the data.

4.2. Churchill Falls power system

Expressions given in Appendix A are used to
analyze the annual energy inflow of Churchill Falls
hydropower complex (Fig. 1). Fig. 3 displays the
annual inflows and all marginal posterior densities
of the parameters of interest together with their corre-
sponding prior density (in dotted line). We first
observe how the data modified or updated prior
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Table 2
Results of regression analyses for Churchill Falls and Ouataouais

Systems 1943–1970 1971–1996

ĝ ŷ s2�ŷ� ĝ ŷ s2�ŷ�

Churchill Falls y�e 5120 27.80 2.80 5121 27.81 4.50
yvar 436 980 12.88 7.45 617 000 18.19 6.00

Outaouais y�e 5253 9.88 11.26 5242 9.85 11.20
yvar 444 950 1.57 44.83 624 000 2.21 34.26

Table 3
Prior specifications from regional analysis

t m1 m2 d s 2

Churchill Falls Exp. value 1970 27.80 27.81 0.01 12.88
(modelM1) Stand. deviation 16 1.67 2.12 2.70 2.73

t s 2
1 s 2

2 h m
Outaouais Exp. value 1970 1.57 2.21 1.41 9.88
(modelM2) Stand. deviation 16 6.70 5.85 4.03 3.36



information by comparing the prior and the posterior
distributions. Such graphs are also useful tools to
interpret the parameter’s uncertainty. Table 4
summarizes estimated posterior quantities (mode,
mean and standard deviation). These estimates are
to be compared with their corresponding prior values
specified in Section 4.1 (Table 3). Table 4 also gives,
for each parameter, a symmetric 90% Bayesian cred-
ible interval.

This analysis indicates first, under the hypothesis of

a change of typeM1 in the annual energy inflow, that
the change-point occurred around 1984 with approxi-
mately a 7-year standard deviation. Also, the mean
level of energy inflow after the shift seems to have
decreased by an amount of 5 TWh with 1.5 TWh of
standard deviation. The credible interval for the inten-
sity of the shift shows that a decrease of almost 8 TWh
is still plausible at a 90% credible level. Moreover,
this interval do not contain zero which suggests a
negative change of at least 2 TWh. However, this
observation provides no justification for actions such
as “rejecting the no change hypothesis” (the model
assumes a change did occur). Under such
hypothesis, the most probable intensity of the
shift being 25 TWh, the hydropower company
would better take action to compensate this poten-
tial loss of energy inflow and ensure balance
between supply and demand for the next few
years. The output of this Bayesian analysis
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Fig. 3. Marginal posterior distributions for modelM1: Churchill Falls power system.

Table 4
Posterior moments and credible interval for Churchill Falls

Parameters Mode Mean Stand. dev. 90% Credible int.

t 1984 1984 6.99 [1981; 1990]
m1 35.28 35.11 0.74 [33.75; 36.28]
m2 30.05 30.16 1.33 [27.61; 32.76]
d 25.21 24.95 1.52 [27.86;22.13]



(estimates and uncertainties) can be used to
choose among different alternatives (anticipating
construction of new power plants, buying electri-
city, using thermal power station, etc.).

One of the advantages of a Bayesian analysis is that
it offers not only marginal but also all joint posterior
distributions, allowing for an assessment of dependen-
cies among parameters. As an illustration, Fig. 4
presents the joint posterior distribution ofd andt . It
shows in particular how, after considering the data,d
and t are very closely related, even though we

assumed prior independence between the change-
point and the other parameters.

Our approach assumes no interannual correlations
on both sides oft . Autocorrelations (lag 1–5) are
given in Table 5 separately for the period 1943–
1984 and 1985–1996.

The first subseries does not exhibit any significant
interannual correlations. However, after the estimated
change-point the autocorrelations are significant. One
could revise the analysis by considering for example
an AR model with a changing coefficient of
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Fig. 4. Joint posterior distribution of (d , t ) for modelM1: Churchill Falls power system.

Table 5
Autocorrelations for Churchill Falls (Note:p-values for H0: “no correlation” appear in parentheses)

Lag 1 2 3 4 5

1943–1984 0.24 0.17 0.02 20.10 20.17
(0.1066) (0.1419) (0.2707) (0.3521) (0.3124)

1985–1996 20.74 0.49 20.22 0.26 20.67
(0.0040) (0.0021) (0.0011) (0.0016) (0.0036)
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autocorrelation. Note that the estimated correlations
after the change-point are only based on ten observa-
tions. Therefore, it may not be relevant to increase the
number of parameters based on such uncertain
estimates.

Before analyzing the change in the variance for the
annual energy inflow of the Outaouais power system
using Gibbs sampler, we first outline the way that the
algorithm would be typically implemented by recon-
sidering modelM1. We attempt to reproduce the

analytical results for the Churchill Falls example by
estimating the marginal posterior densities of interest
using Gibbs algorithm. Under the assumption of
modelM1 and the joint prior distribution in Appendix
A, the full conditional posterior distributions for each
parameter are given in Appendix B. They are readily
available for sampling using standard routines. Note
that sincep�tum;s 2; x;M1� is univariate and discrete,
sampling from this distribution during the Gibbs
sampler cycle is straightforward by simple function
inversion.

Fig. 5 compares the results obtained above with
those evaluated using the Gibbs sampler for the
marginal posterior distributions of the change point
t (continuous line with stars at each time point) and
the intensity of shiftd (dotted line). Discarding the
first t � 1000 values of the chain, the conditional
densities were averaged overm� 1000 replications
using the Rao–Blackwellized density estimate (see
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Fig. 6. Marginal posterior distributions for modelM2: Outaouais power system.

Table 6
Posterior moments and credible interval for Outaouais

Parameters Mode Mean Stand. dev. 90% Credible int.

t 1979 1978 12.81 [1948; 1991]
s 2

1 2.77 3.03 0.77 [1.82; 4.48]
s 2

2 0.90 1.43 0.52 [0.53; 2.80]
h 0.30 0.58 0.20 [0.15; 1.30]



(B.3) for p̂�dux;M1��: There is a clear agreement
between the exact and approximate densities in this
case. Further experimentation showed that the Gibbs
sampler could reproduce the exact posterior distribu-
tions in considerably fewer thant � 1000 iterations.
This is confirmed by inspection of 1000 replicates
after, say, 100 iterations.

4.3. Outaouais power system

Using the full conditionals given in Section 3 and
Gibbs sampler, we analyze the annual energy inflows
calculated at the Outaouais hydropower system. Infer-
ences presented below are also based ont � 1000 and
m� 1000: Fig. 6 displays the annual energy inflows
and all marginal posterior densities of the parameters
of interest together with their corresponding prior
density (in dotted line). In Table 6 we list the esti-
mated posterior quantities and 90% credible intervals.

Finally, Fig. 7 presents the joint posterior distribution
of h andt .

The analysis indicates, under the hypothesis of a
change of typeM2 in the annual energy inflow, that
the variance after the change is at least twice as small
than it was before the change (the posterior mode and
mean forh are, respectively, 0.30 and 0.55). The
change-point seems to be 1979 with approximately
12 years of standard deviation. Comparing these
values to the prior expectation (Table 3), clearly the
information stemming from the data contributed to
modifying considerably the prior state of belief. The
credible interval forh shows that an almost sevenfold
decrease is still plausible at a 90% credible level. But
this interval also suggests a much smaller change,
since it contains one, i.e.s 2

1 < s 2
2 :

These results may seem statistically convincing in
favor of a change, even though the procedure is not a
statistical test. But, is such a decrease in the variability
�h < 0:5� enough to change the strategy of the
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company’s development for the future? Clearly, deci-
sional consequences have to be considered together
with the statistical analysis. If Hydro-Que´bec changes
its policy only in light of these statistical results, the
company may face costly consequences. In the parti-
cular case of a change in the variability of energy
inflows, one should take into account the fact that
the losses associated with the decisions, such as
contracting or not new agreements to sell electricity,
are probably asymmetrical. Suppose the variance is in
fact one half as large as before. The uncertainty
around the mean becomes smaller and the future is
somewhat less variable. Therefore, the mean value, as
a prediction for future observations, is more credible
that it was in the past, so that new agreements to sell
electricity are relatively less risky. The company can
then contract for delivering more power. If, in reality,
the variance has not changed, as it was previously
believed, future values of energy inflows may deviate
from the mean much more frequently than antici-
pated. In this case, the company would not respect
its contractual engagements, resulting in dramatic
consequences. On the other hand, if the company
would decide not to change its policy of development,
when indeed the variance has decreased, good oppor-
tunities may be lost but catastrophic consequences
would not to be encountered as in the former case.

Finally, the two subseries do not exhibit any signif-
icant interannual correlations (Table 7).

5. Discussion and conclusions

The Bayesian method presented in this paper can be
viewed as an extension of the normal models and
practitioners can perform such change-point analysis
routinely using standard statistical toolboxes. This
approach can be generalized to other type of normal
models (a simultaneous change in the mean and

variance for instance, see Perreault et al., 2000a)
and even to other types of p.d.f.s, for instance the
gamma distribution. More precisely, use of probabil-
ity distributions which belong to the exponential class
of p.d.f.s allows for exactly the same line of reasoning
based on conjugacy.

The following conclusions have been reached in
this study:

• Hydrologists can take full advantage of the exis-
tence of conjugate distributions when studying a
single change-point in a statistical model belonging
to the exponential family. If prior independence
between the epoch of change and model parameters
is assumed, the joint posterior distribution is a finite
mixture of conjugate distributions. This allows for
easy computation of posterior odds, as illustrated
by the univariate normal model under the config-
uration of a single change in the mean level.

• It was showed that more complex change-point
problems can be readily addressed by Gibbs
sampling, which is easily accessible to the average
statistical practitioner. This was illustrated in the
case of a single change in the variance for which no
explicit expressions for the posterior distributions
can be found, unless one considers noninformative
priors. In hydrology, the case of a single change in
the variance occurring at an unknown time point
was neglected although this parameter is important
for water resources management. The Gibbs
sampling scheme could also be used if one is inter-
ested to relax the independence assumption. For
instance, change-point in AR models may be trea-
ted by generalizing the approach proposed by Chib
(1993).

• Two case studies involving annual energy inflow
series were presented to illustrate how Bayesian
change-point can be performed, from the
specification of the prior distributions up to the
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Table 7
Autocorrelations for Outaouais (Note:p-values for H0: “no correlation” appear in parentheses)

Lag 1 2 3 4 5

1943–1979 20.04 20.05 20.23 20.03 0.04
(0.7824) (0.9121) (0.4832) (0.6432) (0.7643)

1980–1996 20.35 0.13 20.27 0.26 0.05
(0.1157) (0.2408) (0.2110) (0.1831) (0.2790)



interpretation of posterior odds. It was shown that
several questions can be answered simultaneously
from the posterior distributions. For instance, one
can not only estimate the parameters but can also
directly obtain accuracy measures for the estimate
and interpret dependence between them. This is in
contrast to classical statistics, for which obtaining
estimates and determining their reliability are two
different problems. It was also seen that interpreta-
tion of the results is easy and straightforward. The
frequentist interpretation is difficult to understand
for a nonstatistician, and water resources managers
often find it much too abstract for operational
concerns. For example, interpretation of classical
confidence intervals involves averaging over all
possible data, while it is known which data did in
fact occur. Practitioners usually interpret the results
of a classical confidence interval as a Bayesian
credible interval (Lecoutre, 1997). Moreover,
recourse to the usual asymptotic assumption
required for classical inference (see Hinkley,
1970) is not needed here, and therefore Bayesian
change-point analysis can be applied to modest
sample sizes.

• Unlike many published Bayesian analyses, the
problem of eliciting prior knowledge was not
skirted by using noninformative priors or even
worse, by specifying hyperparameters based on a
subset of the actual sample. To ensure maximum
efficiency, all observations must in fact be used to
update the prior state of belief, and not to specify
hyperparameters. In this paper, prior elicitation
relied on expert knowledge and on external
information about the studied phenomena. A
simple regional analysis was performed to specify
the hyperparameters and represent the prior state
of belief. Effort in this direction should be devel-
oped to take full advantage of the Bayesian
framework.

The problem of model uncertainty has not been
addressed here. All results herein are conditional
upon a given model. BothM1 and M2 assume with
certainty that a change has occurred. This statistical
reporting framework is essential but incomplete. It
forces the hydrologist to choose among the different
models to perform a change-point analysis, and to
exclude some other kinds of changes. To take into

account the “no change hypothesis” and diverse
types of changes, one should assign a prior prob-
ability to the different alternatives, and consider the
change-point study as a Bayesian model selection
problem among the various situations that may
occur. Using the results presented in this paper,
this perspective for hydrological change-point analy-
sis is explored in Perreault et al. (2000a). The
important operational issue of forecasting in chan-
ging sequences is also studied.
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Appendix A

A.1. Bayesian inference for modelM1

The likelihood function resulting fromn observa-
tionsx � �x1; x2;…; xn� generated by modelM1 can be
written as

p�xum;s 2
; t;M1�

�
Yt
i�1

N�xi um1;s
2�

Yn

i�t1 1

N�xi um2;s
2�

� 1
2ps 2

� ��n=2�
exp 2

t

2s 2 �s2
t 1 � �xt 2 m1�2�

� �

× exp 2
�n 2 t�

2s 2 �s2
n2t 1 � �xn2t 2 m2�2�

� �
(A1)
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wherem � �m1;m2� and

�xt �
Xt
i�1

xi

t
; �xn2t �

Xn
i�t1 1

xi

n 2 t
;

s2
t �

Xt
i�1

�xi 2 �xt�2
t

; s2
n2t �

Xn
i�t1 1

�xi 2 �xn2t�2
n 2 t

:

For fixedt , the likelihood (A1) has the structure of
a product of two normal distributions with one
inverted gamma distribution, which suggests an ad
hoc normal-inverted gamma type of distribution to
represent prior knowledge aboutm ands 2. Assuming
for modelM1 prior independence betweent and the
other parameters�m;s 2�; and that p�tuM1� is any
discrete distribution on the set {1; 2;…;n 2 1} ;
leads to the joint prior parameter p.d.f.:

p�m;s 2
; tuM1�

�N�m1uf1;l1s
2�N�m2uf2;l2s

2�IG�s 2ua;b�

� p�tuM1� �NNIG�ms 2uf;l;a;b�p�tuM1�
�A2�

where f � �f1;f2�; l � �l1; l2�; and IG�xua;b�
stands for the inverted gamma p.d.f. with parameters
a [ R

1 andb [ R
1 (see Bernardo and Smith, 1994,

for the density).
Because of conjugate properties (Berger, 1985),

underM1, the conditional joint posterior distribution
p�m;s 2ut; x;M1� givent and the observed datax also
belongs to the class of normal-inverted gamma distri-
butions, but with updated parameters�f 0;l 0;a 0;b 0�:
More precisely,

p�m;s 2ut; x;M1� �NNIG�m;s 2uf 0;l 0;a 0;b 0�;
�A3�

where

l 01 � l1=�1 1 tl1�; f 01 � �1 2 l 01t�f1 1 l 01t �xt;

l 02 � l2=�1 1 �n 2 t�l2�; f 02

� �1 2 l 02�n 2 t��f2 1 l 02�n 2 t� �xn2t;

b 0 � t

2
�s2

t 1 �1 2 l 01t��f1 2 �xt�2�

1
n 2 t

2
�s2

n2t 1 �1 2 l 02�n 2 t���f2 2 �xn2t�2�1 b;

a 0 � a 1 n=2:

To simplify notation, dependence upont andx was
omitted by writing for examplel 01 instead ofl 01�x; t�:
The prior predictive density, i.e. the p.d.f. of the datax
only conditioned upon the change-pointt;p�xut;M1�;
which makes the Bayes theorem denominator, can
be determined by dividing the joint p.d.f.
p�m;s 2

; xut;M1� by expression (A3), and canceling
factors involvingm ands 2. The result is

p�xut;M1� � 1
2p

� �n=2
��������
l 01l

0
2

l1l2

s
ba

�b 0�a 0
G�a 0�
G�a� : �A4�

Integrating the appropriate parameters out of
expression (A3), leads to the conditional posterior
distributionsp�m1ut; x;M1� and p�m2ut; x;M1� of the
means before and after the change-point. The condi-
tional posterior density of the intensity of the shiftd �
m2 2 m1; p�dut; x;M1�; is then deduced by a simple
univariate transformation of variable. These distribu-
tions are Studentt-distributions,ST�a; b; c� (expres-
sion for the p.d.f. can be found in Bernardo and Smith,
1994, p. 432):

p�mi ut; x;M1� �ST�f 0i ;a 0�l 0ib 0�21
;2a 0�; i � 1;2

p�dut; x;M1�

� ST�f 02 2 f 01;a
0�l 01 1 l 02�21

; �b 0�21
; 2a 0�

In our problem,t is unknown and its marginal
posterior distributionp�tux;M1� has to be derived.
Using Bayes theorem and the prior predictive density
(A4), the marginal posterior density of the change-
point t � 1;2;…; n 2 1 under modelM1 is seen to be

p�tux;M1� � p�xut;M1�p�tuM1�Xn2 1

t�1

p�xut;M1�p�tuM1�

/ p�tuM1�
�������
l 01l

0
2

q
�b 0�2a 0 �A5�

This distribution is discrete and gives, for each time
point, the posterior probability of shift occurrence in
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the mean level assuming a change occurred with
certainty. Finally, to draw conclusions regarding the
means before and after the change-point and the inten-
sity of shift, the marginal posterior distributions
p�m1ux;M1�; p�m2ux;M1� andp�dux;M1� must be eval-
uated. This is done by averaging the corresponding
conditional posterior distribution with respect to the
posterior mass function oft :

p�mi ux;M1� �
Xn2 1

t�1

p�mi ut; x;M1�p�tux;M1�

p�dux;M1� �
Xn2 1

t�1

p�dut; x;M1�p�tux;M1�

where i � 1;2: The marginal distributions ofm1, m2

andd appear as finite mixtures of Studentt-distribu-
tions weighted by then 2 1 values of expression (A5).

A.2. Full conditionals for model M1

The collection of full conditionals for modelM1 is
proportional to the product

p�xum;s 2
; t;M1�p�m;s 2

; tuM1�; �B1�
and can be seen to be

p�m1um2;s
2
; t; x;M1� �N�m1uf 01;l

0
1s

2�

p�m2um1;s
2
; t; x;M1� �N�m2uf 02;l

0
2s

2�

p�s 2um; t; x;M1�

� IG s 2ua 0 1 1;
1
2
�m1 2 f 01�2

l 01
1
�m2 2 f 02�2

l 02

" #
1 b 0

 !

p�tum;s 2
; x;M1� / p�xum;s 2

; t;M1�p�tuM1�Xn2 1

t�1

p�xum;s 2
; t;M1�p�tuM1�

The other parameter of interest isd � m2 2 m1: As
in Section 3, we transformedm2 to d to obtain a full
conditional distribution:

p�dum1;s
2
; t; x;M1� �N�duf 02 2 m1;l

0
2s

2� �B2�
and used it to evaluate a Rao–Blackwellized estimate

for p(d ux,M1.):

p̂�dux;M1� � 1
m

Xm
j�1

p�dum�t�1j ;s
2�t�
j ; t�t�j ; x;M1�: �B3�

References

Berger, J.O., 1985. Statistical Decision Theory and Bayesian Analy-
sis, Springer, New York.

Bernardo, J.M., Smith, A.F.M., 1994. Bayesian Theory, Wiley, New
York.

Bernier, J., 1994. Statistical detection of changes in geophysical
series. In: Duckstein, L., Parent, E. (Eds.). Engineering Risk
in Natural Resources Management, NATO Advanced Studies
Institute SeriesKluwer, Dordrecht, pp. 159–176.

Bernier, J., 1967. Les me´thodes baye´siennes en hydrologie statis-
tique, Proceedings of the first Hydrology Symposium, Fort
Collins, pp. 461–470.

Booth, N.B., Smith, A.F.M., 1982. A Bayesian approach to retro-
spective identification of change-points. J. Econometrics 19, 7–
22.

Box, G.E.P., Tiao, G.C., 1973. Bayesian Inference in Statistical
Analysis, Addison-Wesley, Reading, MA.

Broemeling, L.D., 1985. Bayesian Analysis of Linear Models,
Collection Statistics: Textbooks and Monographs, vol. 60,
Marcel Dekker, New York.

Bruneau, P., Rassam, J.-C., 1983. Application d’un mode`le bayé-
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